Al-Air Batteries: Fundamental Thermodynamic Limitations from First-Principles Theory.

نویسندگان

  • Leanne D Chen
  • Jens K Nørskov
  • Alan C Luntz
چکیده

The Al-air battery possesses high theoretical specific energy (4140 W h/kg) and is therefore an attractive candidate for vehicle propulsion. However, the experimentally observed open-circuit potential is much lower than what bulk thermodynamics predicts, and this potential loss is typically attributed to corrosion. Similarly, large Tafel slopes associated with the battery are assumed to be due to film formation. We present a detailed thermodynamic study of the Al-air battery using density functional theory. The results suggest that the maximum open-circuit potential of the Al anode is only -1.87 V versus the standard hydrogen electrode at pH 14.6 instead of the traditionally assumed -2.34 V and that large Tafel slopes are inherent in the electrochemistry. These deviations from the bulk thermodynamics are intrinsic to the electrochemical surface processes that define Al anodic dissolution. This has contributions from both asymmetry in multielectron transfers and, more importantly, a large chemical stabilization inherent to the formation of bulk Al(OH)3 from surface intermediates. These are fundamental limitations that cannot be improved even if corrosion and film effects are completely suppressed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Theoretical Limiting Potentials in Mg/O2 Batteries

A rechargeable battery based on a multivalent Mg/ O2 couple is an attractive chemistry due to its high theoretical energy density and potential for low cost. Nevertheless, metal-air batteries based on alkaline earth anodes have received limited attention and generally exhibit modest performance. In addition, many fundamental aspects of this system remain poorly understood, such as the reaction ...

متن کامل

Thermodynamic and kinetic studies of LiNi0.5Co0.2Mn0.3O2 as a positive electrode material for Li-ion batteries using first principles.

Ni-rich Li-based layered Ni, Co, and Mn (NCM) materials have shown tremendous promise in recent years as positive electrode materials for Li-ion batteries. This is evident as companies developing batteries for electrical vehicles are currently commercializing these materials. Despite the considerable research performed on LiNiαCoβMnγO2 systems, we do not yet have a complete atomic level underst...

متن کامل

Electronic, elastic, vibrational, and thermodynamic properties of type-VIII clathrates Ba8Ga16Sn30 and Ba8Al16Sn30 by first principles

We present the results of studying electronic, elastic, vibrational, and thermodynamic properties of type-VIII clathrates Ba 8 Ga 16 Sn 30 Ba 8 Al 16 Sn 30 calculated from a first-principles approach. The calculations utilize the generalized gradient approximation to density functional theory. The results indicate that the Ba 8 Ga 16 Sn 30 and Ba 8 Al 16 Sn 30 are indirect semiconductors with f...

متن کامل

First Principles Modeling for Research and Design of New Materials

First principles computation can be used to investigate an design materials in ways that can not be achieved with experimental means. We show how computations can be used to rapidly capture the essential physics that determines the useful properties in different applications. Some applications for predicting crystal structure, thermodynamic and kinetic properties, and phase stability are discus...

متن کامل

A Review of Lithium-Air Battery Modeling Studies

Li-air batteries have attracted interest as energy storage devices due to their high energy and power density. Li-air batteries are expected to revolutionize the automobile industry (for use in electric and hybrid vehicles) and electrochemical energy storage systems by surpassing the energy capacities of conventional Li-ion batteries. However, the practical implementation of Li-air batteries is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry letters

دوره 6 1  شماره 

صفحات  -

تاریخ انتشار 2015